Abstract
Conceptual models of the rainfall-runoff behaviour of hydrological catchments have proven to be useful tools for making probabilistic predictions. However, model parameters need to be calibrated to measured data and their uncertainty quantified. Bayesian statistics is a consistent framework for learning from observed data, in which knowledge about model parameters is described through probability distributions. One of the dominant sources of uncertainty in rainfall-runoff modelling is the true rainfall over the catchment, which often needs to be inferred from a few rain-gauge and runoff measurements. modelling this uncertainty naturally leads to stochastic differential equation models, which render traditional inference algorithms such as the Metropolis algorithm infeasible due to their expensive likelihood functions. Therefore, in hydrology and other applied fields of research, error models are traditionally oversimplified for ease of inference as additive errors on the output, leading to biased parameter estimates and unreliable predictions. However, thanks to recent advancements in algorithms and computing power, full-fledged Bayesian inference with stochastic models is no longer off-limits for hydrological applications. We demonstrate this with a case study from urban hydrology, for which we employ a highly efficient Hamiltonian Monte Carlo inference algorithm with a time-scale separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.