Abstract

The spatio-temporal structure of natural climate variability has to be taken into account when unraveling observed climatic changes and simulate future climate change. However, based on the comparison of temperature reconstructions and climate model simulations covering the past two millenia, it has been argued that climate models are biased. They would simulate too little temporal temperature variability and too high correlations between temperature time series from different continents. One of the proposed causes is the lack of internal climate variability in climate models on centennial time scales, for instance variability related to the Atlantic Meridional Overturning Circulation (AMOC). We present a perturbed-parameter ensemble with the iLOVECLIM earth system model containing various levels of AMOC-related internal climate variability to investigate the effect on the spatio-temporal temperature variability structure. The model ensemble shows that indeed enhanced AMOC variability leads to more continental-scale temperature variability, but it also increases the spatio-temporal temperature correlations between different continents. However, combining the iLOVECLIM results with CMIP5 model results and various PAGES-2K temperature field reconstructions, we find that neither model results or reconstructions are robust. We show overall agreement for the magnitude of continental temperature variability in models and reconstructions, but both the simulated and the reconstructed ranges are large. This is even more true when considering higher order metrices like inter-continental temperature correlations or temperature variability land-sea contrasts. For such metrices, uncertainties in both model results and temperature reconstructions are so large that they hamper our ability to constrain simulated spatio-temporal structure of centennial temperature variability. As a result, we cannot determine the importance of AMOC variability for the climatic evolution over the past two millenia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.