Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> There are indications that the reference climatology underlying meteorological drought has shown non-stationarity at seasonal, decadal, and centennial time scales, impacting the interpretation of normalized drought indices and potentially producing serious ecological, economic, and social consequences. Analyzing these trends in the meteorological drought climatology beyond the 100-year observation period contributes to a better understanding of the non-stationary changes, ultimately determining whether they are within the range of natural variability or outside this range. To accomplish this, our study introduces a novel approach to incorporate unevenly scaled tree-ring proxy data (NASPA) with instrumental precipitation datasets by first temporal downscaling the proxy data to produce a regular time series, and then modeling climate non-stationarity while simultaneously correcting model induced bias. This new modeling approach was applied to 14 sites across the continental United States using the 3-month Standardized Precipitation Index (SPI) as a basis. Findings showed locations which have experienced recent rapid shifts towards drier or wetter conditions during the instrumental period compared to the past 1000 years, with drying trends generally in the west and wetting trends in the east. This study also found that seasonal shifts have occurred in some regions recently, with seasonality changes most notable for southern gauges. We expect that our new approach provides a foundation for incorporating various datasets to examine non-stationary variability in long-term precipitation climatology and to confirm the spatial patterns noted here in greater detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.