Abstract

The instability of the Northern Hemisphere polar vortex is mainly caused by the breaking of planetary-scale (Rossby) waves (RWs). However, gravity waves (GWs) may also play an important role in polar vortex preconditioning before breakdown events. Moreover, GWs affect dynamics in the stratosphere by altering the upward propagation of RWs at short time scales and therefore indirectly influence polar vortex stability. Due to the coarse spatial resolution of global chemistry-climate models, current efforts in climate research rely on simulations where the majority of the GW spectrum is parameterized. In the present study, we apply a recently developed method for detecting strong orographic gravity wave (OGW) drag events in the lower stratosphere above the Himalayas. For this, we use a specified dynamics simulation of the chemistry-climate model CMAM (Canadian Middle Atmosphere Model) spanning the period 1979–2010. We show that strong OGW drag events above the Himalayas are associated with anomalously increased upward RW propagation in the stratosphere. This, in turn, is associated with an increase of the refractive index in the mid-latitude lower stratosphere, a region where the OGW drag dominates. Our results also illustrate that OGW strong events have the potential to alter ozone variability via changes of mixing in the surf zone and advection from lower latitudes. Altogether, we detail a preconditioning process of the polar vortex morphology by GWs above the Himalayas and how this relates to the proximity to polar vortex breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call