Abstract
Here we present the first open access long term 3D hydrodynamic ocean hindcast for the New Zealand ocean estate. The 28 years 5 km x 5 km resolution free running ocean model configuration was developed under the umbrella of the Moana Project, using the Regional Ocean Model System (ROMS) version 3.9. It includes an improved bathymetry, spectral tidal forcing at the boundaries, and inverse barometer effect usually absent from global simulations. The continuous integration provides a framework to improve our understanding of the ocean dynamics and connectivity, as well as identify long-term trends and drivers for particular processes. The simulation was compared to a series of satellite and in-situ observations, including sea surface temperature (SST), sea surface height (SSH), coastal water level and temperature stations, moored temperature time series, and temperature and salinity profiles from the CORA5.2 dataset – including Argo floats, XBT and CTD stations. These comparisons show the model simulation is consistent and represents important ocean processes at different temporal and spatial scales, from local to regional and from a few hours to years including extreme events. The root-mean-squared errors are 0.11m for SSH, 0.23 °C for SST, and < 1 °C and 0.15 g/kg for temperature and salinity profiles. Coastal tides are simulated well, and both high skill and correlation are found between modelled and observed sub-tidal sea level and water temperature stations. Moreover, cross-sections of the main currents around New Zealand show the simulation is consistent with transport, velocity structure, and variability reported in the available literature. This first multi-decadal, high resolution, open access hydrodynamic model represents a significant step forward for ocean sciences in the New Zealand region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.