Abstract

This article introduces a new chemistry option in the Weather Research and Forecasting model data assimilation (WRFDA) system coupled with the WRF-Chem model (Version 4.3.1) to activate aqueous chemistry (AQCHEM) for the assimilation of surface concentrations of particulate matter (PM) along with atmospheric observations. The gas-phase mechanism used is the Regional Atmospheric Chemistry Mechanism (RACM), the inorganic aerosols are treated with the Modal Aerosol Dynamics Model for Europe (MADE), and secondary organic aerosol (SOA) production is parameterized based on the Volatility Basis Set (VBS) approach. The "RACM-MADE-VBS-AQCHEM" scheme used in the weakly coupled data assimilation and forecast system facilitates aerosol-cloud-radiation-precipitation interactions through analysis and forecast cycling, accounting for both direct and indirect aerosol effects in the short-term air quality prediction. The new implementation in the three-dimensional variational data assimilation (3D-Var) system was tested with the assimilation of PM2.5 and PM10 concentrations on the ground over the East Asian region through month-long cycling for Spring 2019. It is demonstrated that the inclusion of aerosol species in the aqueous (or cloud-borne) phase in both analysis and forecast reproduces aerosol wet removal processes in association with the development of clouds, systematically changing the atmospheric composition. The new option with aqueous chemistry in WRFDA is beneficial in air quality forecasting in cloudy conditions, while the simulations without aqueous chemistry overestimate surface PM10 (PM2.5) by a factor of 10 (3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call