Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> The role of gravity waves on microphysics of tropical cirrus clouds and air parcel dehydration was studied using the combination of Lagrangian observations of temperature fluctuations and a 1.5 dimension model. High frequency measurements during isopycnal balloon flights were used to resolve the gravity wave signals with periods ranging from a few days to 15 min. The detailed microphysical simulations with homogeneous freezing, sedimentation and a crude horizontal mixing represent the slow ascent of air parcels in the Tropical Tropopause Layer. A reference simulation describes the slow ascent of air parcels in the tropical tropopause layer, with nucleation occurring only below the cold point tropopause with a small ice crystals density. The inclusion of the gravity waves modifies drastically the low ice concentration vertical profile and weak dehydration found during the ascent alone, with the increased ice crystal number and size distribution agreeing better with observations. Numerous events of nucleation occur below and above the cold point tropopause, efficiently restoring the relative humidity over ice to equilibrium with respect to the background temperature, as well as increase the cloud fraction in the vicinity of the cold-point tropopause. The corresponding decrease in water vapor is estimated at 2 ppmv around the cold point tropopause.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call