Abstract
To perform realistic high-resolution air quality modeling in a polluted urban area, the WRF (Weather Research and Forecasting) model is used with an embedded large-eddy simulation (LES) module and with online chemistry. As an illustration, a numerical experiment is conducted in the megacity Hong Kong, which is characterized by multi-type pollution sources as well as complex topography. The multi-resolution simulations from mesoscale to LES scales are evaluated by comparing to ozone sounding profiles and surface observations. The comparisons show that both mesoscale and LES simulations reproduce well the mean concentrations of the chemical species and their diurnal variations at the background stations. However, the mesoscale simulations largely underestimate the NOX concentrations and overestimate O3 at the roadside stations due to the coarse representation of the traffic emissions. The LES simulations improve the agreement with the measurements near the road traffic, and the LES with the highest spatial resolution (33.3 m) provides the best results. The LES simulations show more detailed structures in the spatial distributions of chemical species than the mesoscale simulations, highlighting the capability of LES to resolve high-resolution photochemical transformations in urban areas. Compared to the mesoscale model results, the LES simulations show similar evolutions in the profiles of the chemical species as a function of the boundary layer development over a diurnal cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.