Abstract
<strong class="journal-contentHeaderColor">Abstract.</strong> Data assimilation (DA) of remotely sensed leaf area index (LAI) can help to improve land surface model estimates of energy, water, and carbon variables. So far, most studies have used bias-blind LAI DA approaches, i.e.\ without correcting for biases between model forecasts and observations. This might hamper the performance of the DA algorithms in the case of large biases in either observations or simulations, or both. We perform bias-blind and bias-aware DA of the Copernicus Global Land Service LAI into the Noah-MP land surface model forced by the ERA5 reanalysis over Europe in the 2002–019 period, and evaluate how the choice of bias correction affects estimates of gross primary productivity (GPP), evapotranspiration (ET), runoff, and soil moisture. In areas with a large LAI bias, the bias-blind LAI DA leads to a reduced bias between observed and modelled LAI, an improved agreement of GPP, ET, and runoff estimates with independent products, but a worse agreement of soil moisture estimates with the European Space Agency Climate Change Initiative (ESA CCI) soil moisture product. Bias-blind LAI DA can also lead to unrealistic shifts in soil moisture climatologies, for example when the assimilated LAI data in irrigated areas are much higher than those simulated without any irrigation activated. Furthermore, the bias-blind LAI DA produces a pronounced sawtooth pattern due to model drift between update steps. This model drift also propagates to short-term estimates of GPP and ET, and to internal DA diagnostics that indicate a suboptimal DA system performance. The bias-aware approaches based on a priori rescaling of LAI observations to the model climatology avoid the negative effects of the bias-blind assimilation. They retain the improvements of GPP anomalies from the bias-blind DA, but forego improvements in the root mean square deviation (RMSD) of GPP, ET, and runoff. As an alternative to rescaling, we discuss the implications of our results for model calibration or joint parameter and state update DA, which has the potential to combine bias reduction with optimal DA system performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.