Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Brown carbon (BrC) aerosol is light-absorbing organic carbon that affects radiative forcing and atmospheric photochemistry. The BrC chromophoric composition and its linkage to optical properties at the molecular level, however, are still not well characterized. In this study, we investigate the day-night differences in the chromophoric composition (38 species) and optical properties of water-soluble and water-insoluble BrC fractions (WS-BrC and WIS-BrC) in aerosol samples collected in Shijiazhuang, one of the most polluted cities in China. We found that the light absorption contribution of WS-BrC to total BrC at 365 nm was higher during the day (62 &plusmn; 8 %) than during the night (47 &plusmn; 26 %), which is in line with the difference in chromophoric polarity between daytime (more polar nitrated aromatics) and nighttime (more less-polar polycyclic aromatic hydrocarbons, PAHs). The high polarity and water solubility of BrC in daytime suggests the enhanced contribution of secondary formation to BrC during the day. There was a decrease of the mass absorption efficiency of BrC from nighttime to daytime (2.88 &plusmn; 0.24 vs. 2.58 &plusmn; 0.14 for WS-BrC and 1.43 &plusmn; 0.83 vs. 1.02 &plusmn; 0.49 m<sup>2</sup> gC<sup>-1</sup> for WIS-BrC, respectively). Large polycyclic aromatic hydrocarbons (PAHs) with 4&ndash;6-rings PAHs and nitrophenols contributed to 76.7 % of the total light absorption between 300&ndash;420 nm at night time, while nitrocatechols and 2&ndash;3-ring oxygenated PAHs accounted for 52.6 % of the total light absorption at day. The total mass concentrations of the identified chromophores showed larger day-night difference during the low-pollution period (day-to-night ratio of 4.3) than during the high-pollution period (day-to-night ratio of 1.8). The large day-night difference in BrC composition and absorption, therefore, should be considered when estimating the sources, atmospheric processes and impacts of BrC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.