Abstract

Reactive organic gases (ROGs), as important precursors of secondary pollutants, are not well resolved as the chemical complexity challenged its quantification in many studies. Here, a near-complete speciation of ROGs with 125 species was developed and applied to evaluate their emission characteristics from residential solid fuel combustion. ROGs identified by the present method accounted for ~90 % of the “total” as the sum of species by Gas Chromatography equipped with a Mass Spectrometer and a Flame Ionization Detector (GC-MS/FID) and H3O+/NO+ Proton Transfer Reaction Time-of-Flight Mass Spectrometer (Vocus PTR-ToF-MS). The study further revealed that with 55 species, mainly oxygenated species, higher hydrocarbons with > 8 carbon atoms, and nitrogen-containing ones, previously un- and under-characterized, ROG emissions from residential coal and biomass combustion were underestimated by 44.3 % ± 11.8 % and 22.7 % ± 3.9 %, respectively, which further amplified the underestimation of secondary organic aerosols formation potential (SOAP) as high as 70.3 % ± 1.6 % and 89.2 % ± 1.0 %, respectively. The OH reactivity (OHR) of ROG emissions was also undervalued significantly. The study highlighted the importance of acquiring completely speciated measurement of ROGs from residential emissions, as well as other processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call