Abstract
Most previous studies of aeolian sediment transport have focused on shifting sand surfaces. As a result, sediment transport above gobi (gravel) surfaces is still poorly understood. In this field study, we quantified this transport to provide important support for parameterizing aeolian sediment transport models. We found that the relationship between the Sorensen horizontal sediment transport (Qs) and shear velocity (u*) could be expressed as Qs = ρau*3 ⁄ g(1−u*t2 ⁄ u*2)(α+γu*t ⁄ u*+βu*t2/u*2), where α = –127.4, β = 714.4, and γ = 737.0. The relationship between the vertical sediment transport (F) and shear velocity could be expressed as Fd = CKρa (u*2−u*2), where CK = 0.75. Although Q and F on gobi surfaces can be expressed similarly to previous results (i.e., similar equation forms), the coefficients were much larger than those for a shifting sand surface; that is, sediment transport was higher above the gobi. This difference resulted from the larger sand transport rate and saltation height above a gobi surface, and the larger transport and higher saltation height were related to gravel cover and soil crusts on the gobi surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.