Abstract

The increasing ozone (O3) pollution and high fraction of secondary organic aerosols (SOA) in fine particle mass highlighted the importance of volatile organic compounds (VOCs) in air pollution control. In this work, a campaign of comprehensive field observations was conducted at an urban site in Beijing, from December 2018 to November 2019, to identify the composition, sources, and secondary transformation potential of VOCs. The total mixing ratio of the 95 quantified VOCs (TVOC) observed in this study ranged from 5.5–118.7 ppbv with the mean value of 34.9 ppbv, and the contemporaneous mixing ratios of TVOC was significantly lower than those observed in 2014 and 2016, confirming the effectiveness of VOCs emission control measures in Beijing in recent years. Alkanes, OVOCs and halocarbons were the dominant chemical groups, accounting for 75–81 % of the TVOCs across the sampling months. High and low-O3/PM2.5 months as well as several O3/PM2.5 polluted days were identified during the sampling period. By deweathered calculation, we found that high O3/PM2.5 levels were due to both enhanced precursor emission levels and meteorological conditions favorable to O3 and PM2.5 production. The molar ratios of VOCs to NOX indicated that O3 formation was limited by VOCs during the whole sampling period. Diesel exhaust and industrial emission were identified as the major VOCs sources on both O3-polluted and PM2.5-polluted days based on positive matrix factorization (PMF) analysis, accounting for 46 % and 53 %, respectively. Moreover, higher proportion of oil/gas evaporation was observed on O3-polluted days (18 %) than that on O3-clean days (13 %), and higher proportion of coal/biomass combustion was observed on PM2.5-polluted days (18 %) than that on PM2.5-clean days (13 %). On the base of O3 formation impact, VOCs from fuel evaporation and diesel exhaust particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene and 1-hexene were the main contributors, illustrating the necessity of conducting emission controls on these pollution sources and species for alleviating O3 pollution. Instead, VOCs from diesel exhaust and coal/biomass combustion were found to be the dominant contributors for secondary organic aerosol formation potential (SOAFP), particularly the VOC species of toluene, 1-hexene, xylenes, ethylbenzene and styrene, and top priority should be given to these for the alleviation of haze pollution. The positive matrix factorization (PSCF) analysis showed that O3 and PM2.5 pollution was mainly affected by local emissions. This study provides insights for government to formulate effective VOCs control measures for air pollution in Beijing.

Highlights

  • The ozone (O3) and fine particulate matter (PM2.5) pollution has restricted improvements in air quality in China.Observation data from the Chinese Ministry of Environment and Ecolgy (MEE) network has witnessed an upward trend for O3 across the country over the period 2013-2019 (Fu et al, 2019; Li et al, 2017; Li et al, 2020; Shen et al, 2019; Fan et al, 2020)

  • Major Volatile organic compounds (VOCs) compositions were generally consistent during the whole measurement period

  • (44 μg m-3) > low-PM2.5 months (29 μg m-3). These results suggested that apart from meteorological factors, emissions play a role in deteriorating PM2.5 and O3 pollution, and reducing anthropogenic emissions is essential for improving air quality

Read more

Summary

Introduction

The ozone (O3) and fine particulate matter (PM2.5) pollution has restricted improvements in air quality in China.Observation data from the Chinese Ministry of Environment and Ecolgy (MEE) network has witnessed an upward trend for O3 across the country over the period 2013-2019 (Fu et al, 2019; Li et al, 2017; Li et al, 2020; Shen et al, 2019; Fan et al, 2020). The ozone (O3) and fine particulate matter (PM2.5) pollution has restricted improvements in air quality in China. Haze pollution occurred in urban sites were commonly characterized by high fractions of secondary organic aerosols (SOA) in fine particles (Guo et al, 2014; Huang et al, 2014). Volatile organic compounds (VOCs) are key precursors for the formation of O3 via multiphase reactions (Odum et al., 1997; Atkinson, 2000; Sato et al, 2010; Huang et al, 2014). The VOCs compounds including aromatics and biogenic species have significant impact on SOA formation which play an important role in haze formation (Hallquist et al, 2009; Huang et al, 2014). VOCs emission abatement is imperative for improving air quality in China

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call