Abstract

Monitoring and modeling aerosol particle lifecycle in Southeast Asia (SEA) is challenged by high cloud cover, complex meteorology, and the wide range of aerosol species, sources, and transformations found throughout the region. Satellite observations are limited, and there are few in situ observations of aerosol extinction profiles, aerosol properties, and environmental conditions. Therefore, accurate aerosol model outputs are crucial for the region. This work evaluates the Navy Aerosol Analysis and Prediction System Reanalysis (NAAPS-RA) aerosol optical thickness (AOT) and light extinction products using airborne aerosol and meteorological measurements from the Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex) in SEA. Modeled AOTs and extinction coefficients were compared to those retrieved with a High Spectral Resolution Lidar (HSRL-2). Correlations were highest for AOT in the mixed layer (AOTML; R2 = 0.83, bias = 0.00, root mean square error [RMSE] = 0.03) compared to total AOT (R2 = 0.68, bias = 0.01, RMSE = 0.14), although the correlations between the observations and 1° × 1° degree NAAPS-RA outputs were weaker in regions with strong gradients in aerosol properties, such as near areas of active convection. Correlations between simulated and retrieved aerosol extinction coefficients were highest from 145–500 m (R2 = 0.75, bias = 0.01 km−1, RMSE = 0.08 km−1) and decreased with increasing altitude (R2 = 0.69 and 0.26, bias = 0.00 and 0.00 km−1, RMSE = 0.09 and 0.00 km−1 for 500–1500 m and > 1500 m, respectively), which was likely a result of the use of bulk cloud mixing parameterizations. We also investigated the role of possible relative humidity (RH) errors in extinction simulations. Despite negative biases in modeled RH (−4.9, −7.7, and −2.3 % for altitudes < 500 m, 500–1500 m, and > 1500 m, respectively), AOT and extinction agreement with the HSRL-2 did not change significantly at any altitude when RHs from dropsondes were substituted into the model. Improvements may have been stunted due to errors in how NAAPS-RA modeled physics of particle hygroscopic growth, dry particle mass concentrations, and/or dry mass extinction efficiencies, especially when combined with AOT corrections from data assimilation. Specifically, the model overestimated the hygroscopicity of (i) smoke particles from biomass burning in the Maritime Continent (MC), and (ii) anthropogenic emissions transported from East Asia. This work provides insight into how certain environmental and microphysical properties influence AOT and extinction simulations, which can then be interpreted in the context of modeling global concentrations of particle mass and cloud condensation nuclei (CCN).

Highlights

  • Southeast Asia (SEA) has long been considered one of the most susceptible locations to the repercussions of climate change (IPCC, 2013, 2007), with the Philippines considered as one of the most vulnerable in particular (Yusuf and Francisco, 2009)

  • Mean values were largely dictated by the HSRL-2 mixed layer heights (MLHs) product as there were 1 – 3 orders of magnitude more MLH retrievals than there were dropsonde releases

  • Mean MLHs estimated from the three methods relying on dropsonde data were all negatively biased for 13 (3) of the 19 research flights (RFs) in reference to the overall mean

Read more

Summary

Introduction

Southeast Asia (SEA) has long been considered one of the most susceptible locations to the repercussions of climate change (IPCC, 2013, 2007), with the Philippines considered as one of the most vulnerable in particular (Yusuf and Francisco, 2009). Tropical cyclones and their ensuing storm surges have consistently battered the Philippines (e.g., Lagmay et al, 2015). These storms may become more severe as global temperatures increase (Sobel et al, 2016; Knutson et al, 2019). Considering all these grave threats, it is more important than ever to be able to model future environmental conditions in SEA and issue timely advisories to inhabitants of the region

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.