Abstract
The COVID-19 (Coronavirus disease 2019) European lockdowns have lead to a significant reduction in the emissions of primary pollutants such as NO (nitric oxide) and NO2 (nitrogen dioxide). As most photochemical processes are related to nitrogen oxide (NOx ≡ NO + NO2) chemistry, this event has presented an exceptional opportunity to investigate its effects on air quality and secondary pollutants, such as tropospheric ozone (O3). In this study, we present the effects of the COVID-19 lockdown on atmospheric trace gas concentrations, net ozone production rates (NOPR) and the dominant chemical regime throughout the troposphere based on three different research aircraft campaigns across Europe. These are the UTOPIHAN campaigns in 2003 and 2004, the HOOVER campaigns in 2006 and 2007 and the BLUESKY campaign in 2020, the latter performed during the COVID-19 lockdown. We present in situ observations and simulation results from the ECHAM5/MESSy Atmospheric Chemistry model which allows for scenario calculations with business as usual emissions during the BLUESKY campaign, referred to as "no-lockdown scenario". We show that the COVID-19 lockdown reduced NO and NO2 mixing ratios in the upper troposphere by around 55 % compared to the no-lockdown scenario due to reduced air traffic. O3 production and loss terms reflected this reduction with a deceleration in O3 cycling due to reduced mixing ratios of NOx while NOPRs were largely unaffected. We also study the role of methyl peroxyradicals forming HCHO (αCH3O2) to show that the COVID-19 lockdown shifted the chemistry in the upper troposphere/tropopause region to a NOx limited regime during BLUESKY. In comparison, we find a VOC limited regime to be dominant during UTOPIHAN.
Highlights
COVID-19 (Coronavirus disease 2019) describes the disease accompanying an infection with the SARS-CoV-2 virus
We present the effects of the COVID-19 lockdown on atmospheric trace gas concentrations, net ozone production rates (NOPR) and the dominant chemical regime throughout the troposphere based on three different research aircraft campaigns across Europe
This analysis is structured as follows: As a full set of in situ observations necessary for a regime analysis and calculating net ozone production rates, what includes NO, O3, OH, HO2, CO, CH4, H2O, j(NO2) and j(O1D), is only available for the HOOVER campaign, we first show that the model and experimental data are in close agreement for this campaign
Summary
COVID-19 (Coronavirus disease 2019) describes the disease accompanying an infection with the SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) virus. The disease is highly infectious and can have severe health consequences, including 20 premature death, for elderly and people with pre-existing conditions (WHO, 2021). In many countries worldwide including the European continent - governments initiated a shutdown of the daily life for minimizing the spread of the virus, which is referred to as COVID-19 lockdown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.