Abstract

The low energy electronic spectra of rotationally faulted graphene bilayers are studied using a long wavelength theory applicable to general commensurate fault angles. Lattice commensuration requires low energy electronic coherence across a fault and preempts massless Dirac behavior near the neutrality point. Sublattice exchange symmetry distinguishes two families of commensurate faults that have distinct low energy spectra which can be interpreted as energy-renormalized forms of the spectra for the limiting Bernal and AA stacked structures. Sublattice-symmetric faults are generically fully gapped systems due to a pseudospin-orbit coupling appearing in their effective low energy Hamiltonians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.