Abstract

Using an unbiased quantum MonteCarlo method, we obtain convincing evidence of the existence of a checkerboard supersolid at a commensurate filling factor 1/2 (a commensurate supersolid) in the soft-core Bose-Hubbard model with nearest-neighbor repulsions on a cubic lattice. In conventional cases, supersolids are realized at incommensurate filling factors by a doped-defect-condensation mechanism, where particles (holes) doped into a perfect crystal act as interstitials (vacancies) and delocalize in the crystal order. However, in the model, a supersolid state is stabilized even at the commensurate filling factor 1/2 without doping. By performing grand canonical simulations, we obtain a ground-state phase diagram that suggests the existence of a supersolid at a commensurate filling. To obtain direct evidence of the commensurate supersolid, we next perform simulations in canonical ensembles at a particle density ρ=1/2 and exclude the possibility of phase separation. From the obtained snapshots, we discuss its microscopic structure and observe that interstitial-vacancy pairs are unbound in the crystal order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.