Abstract

In this paper, we show that Krypton atoms form a commensurate solid (CS) phase with a fractional coverage of one krypton atom per every four carbons on zigzag carbon nanotubes. This is a unique phase, different from the $$\sqrt{3} \times \sqrt{3}$$ R30 $$^\circ $$ CS monolayer formed on graphite, which has a lower coverage of one krypton atom per every six carbons. Our prediction disagrees with experiments that observe in nanotubes the same solid structure found on graphite. In order to address this discrepancy, we simulated adsorption of Kr on zigzag and armchair single-walled carbon nanotubes with radii ranging from 4.7 to 28.83 A. Our simulations confirm that the CS of coverage 1/4 forms on medium-sized zigzag nanotubes. We also found the 1/6-coverage solid on graphene, which represents the infinite-radius limit of a nanotube. Our findings are key to experiments of adsorption on nanotubes where the interpretation and justification of the results are based on the monolayer coverage, such as mass or conductance isotherms measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.