Abstract

Ureas characteristically form one-dimensional hydrogen-bonded alpha-networks with a repeat distance of about 4.60 A. Oxamides form similar alpha-networks with a longer 5.05 A repeat distance. The urea of glycine and the oxamide of glycine were each cocrystallized with a series of four bipyridines, including two urea derivatives and two oxamide derivatives. This series of eight cocrystals was studied by X-ray diffraction in order to see what would happen when molecules that would normally form alpha-networks with incommensurate distances were forced into the same crystal. The two all-urea crystals and the two all-oxamide crystals contained the expected alpha-networks with repeat distances in accordance with normal urea or oxamide values. Four of the crystals were mixed, containing both oxamide and urea molecules. Three consisted of two-dimensional beta-networks with alternating parallel urea and oxamide subnetworks. The repeat distances averaged 4.87 A, a value close to the value expected for oxamides, but shorter than any previously observed examples. In the fourth mixed crystal, the urea alpha-network formed with a normal urea repeat distance, but the oxamide network did not form, the oxamide adopting an unusual molecular conformation that maximizes intramolecular hydrogen bonds instead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.