Abstract

Commensurability effects have been theoretically studied in a hybrid system consisting of a Josephson junction located in a nonuniform field induced by an array of magnetic particles. A periodic phase-difference distribution in the junction that is caused by the formation of a regular lattice of Abrikosov vortices generated by the magnetic field of the particles in superconducting electrodes is calculated. The dependence of the critical current through the junction I c on the applied magnetic field H is shown to differ strongly from the conventional Fraunhofer diffraction pattern because of the periodic modulation of the Josephson phase difference created by the vortices. More specifically, the I c(H) pattern contains additional resonance peaks, whose positions and heights depend on the parameters and magnetic state of the particles in the array. These specific features of the I c(H) dependence are observed when the period of the Josephson current modulation by the field of the magnetic particles and the characteristic scale of the change in the phase difference by the applied magnetic field are commensurable. The conditions that determine the positions of the commensurability peaks are obtained, and they are found to agree well with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.