Abstract

The gastrointestinal tract is a complex and dynamic network where an intricate and mutualistic symbiosis modulates the relationship between the host and the microbiota in order to establish and ensure gut homeostasis. Commensal Clostridia consist of gram-positive, rod-shaped bacteria in the phylum Firmicutes and make up a substantial part of the total bacteria in the gut microbiota. They start to colonize the intestine of breastfed infants during the first month of life and populate a specific region in the intestinal mucosa in close relationship with intestinal cells. This position allows them to participate as crucial factors in modulating physiologic, metabolic and immune processes in the gut during the entire lifespan, by interacting with the other resident microbe populations, but also by providing specific and essential functions. This review focus on what is currently known regarding the role of commensal Clostridia in the maintenance of overall gut function, as well as touch on their potential contribution in the unfavorable alteration of microbiota composition (dysbiosis) that has been implicated in several gastrointestinal disorders. Commensal Clostridia are strongly involved in the maintenance of overall gut function. This leads to important translational implications in regard to the prevention and treatment of dysbiosis, to drug efficacy and toxicity, and to the development of therapies that may modulate the composition of the microflora, capitalizing on the key role of commensal Clostridia, with the end goal of promoting gut health.

Highlights

  • The gastrointestinal (GI) tract, man’s most widely exposed organ system to the external environment with a global surface of 200 m2, is a complex and dynamic network with interplay between various gut mucosal cells and their defense molecules, the immune system, food particles, and the resident microbiota

  • The microbiota of individuals with chronic inflammation show lower bacterial diversity and it has been determined that Clostridium clusters IV, F. prausnitzii, and XIVa are significantly less abundant in inflammatory bowel diseases (IBD) patients compared to healthy subjects [14,98,101]. It is still unknown whether the decrease in Clostridia is a cause or a consequence of chronic inflammation in IBD patients and in autoimmunity, but we can speculate that they are necessary for immune homeostasis, contributing to the suppression of autoimmunity and deleterious inflammation in humans

  • The present review provides evidence that Clostridia, contributing to a significant portion of indigenous bacteria in the large intestine, are strongly involved in the maintenance of overall gut function

Read more

Summary

Introduction

The gastrointestinal (GI) tract, man’s most widely exposed organ system to the external environment with a global surface of 200 m2, is a complex and dynamic network with interplay between various gut mucosal cells and their defense molecules, the immune system, food particles, and the resident microbiota. The gut microbiota, which includes Clostridium spp., is an essential actor in the aforementioned defense mechanisms and in the resistance to infection It plays a crucial role, both by acting indirectly, for example in immune system development and modulating immunological tolerance [37], and directly, by preventing potentially deleterious and pathogenic organisms from taking up residence. Catecholamines are utilized in the central and peripheral nervous systems, which regulate various types of bodily functions, including cognitive abilities, mood [73], immune reactions [74,75], motility [73], and active water absorption of the intestine [76,77] This is the first report that indicates a critical role of the gut microbiota, of commensal Clostridia, in the generation of free catecholamines in the gut lumen and open new horizons in the relationship between human homeostasis and behavior, intestinal physiology and the gut microbiota. It is still unknown whether the decrease in Clostridia is a cause or a consequence of chronic inflammation in IBD patients and in autoimmunity, but we can speculate that they are necessary for immune homeostasis, contributing to the suppression of autoimmunity and deleterious inflammation in humans

Conclusions
33. Sartor RB
36. Fasano A
Findings
60. Csordas A
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.