Abstract

Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes an epithelial anion channel. Morbidity is mainly due to lung disease, which is characterized by chronic neutrophilic inflammation. Deregulation of inflammatory pathways is observed in the airways of CF patients, as evidenced by exaggerated NF-κB activity, causing an increase in the local release of pro-inflammatory cytokines such as IL-8. COMMD1, a pleiotropic protein, was recently shown to interact with CFTR and to promote CFTR cell surface expression. The effect of COMMD1 on the NF-κB pathway was assessed in CF and non-CF bronchial epithelial cells by knockdown and overexpression experiments. Results showed that (i) COMMD1 knockdown induced NF-κB-dependent transcription, (ii) COMMD1 overexpression inhibited NF-κB activity and was associated with a decrease in IL-8 transcript level and protein secretion. These data demonstrate the anti-inflammatory properties of COMMD1 in bronchial epithelial cells and open new therapeutic avenues in CF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.