Abstract
Abstract In-plane alignment of nematic liquid crystals was regulated by polarized-light-irradiation of a cell assembled with a silica plate, the surface of which was modified by attaching 4-hexyl-4′-hexyloxyazobenzene at its o-position through surface silylation. The photoisomerizability of the chemisorbed azo-chromophore was affected by their surface density and the nature of photoinactive co-modifiers. The efficiency of the photoregulation of liquid crystal alignment was optimized by two-dimensional dilution of the chromophore with ethyltriethoxysilane (ETS) or 3-aminopropyltriethoxysilane (ATS). As a result, favourable procedure was to modify a silica surface with a crude azo-silylating reagent contaminated by ATS. The rate of the photoinduced reorientation of liquid crystals was followed by monitoring the alteration of the alignment direction of a dichroic dye dissolving in a mesophasic layer upon exposure to linearly polarized light. Exposure energy for the in-plane reorientation of a liquid crystal ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.