Abstract

SummaryIn this paper, we propose a command governor‐based adaptive control architecture for stabilizing uncertain dynamical systems with not only matched but also unmatched uncertainties and achieving the desired command following performance of a user‐defined subset of the accessible states. In our proposed solution, online least‐squares solutions for the matched and unmatched parameters are obtained through integration method and they are employed in the adaptive control framework. Specifically, the matched uncertainty is identified and its effect upon the system behavior is entirely attenuated. Moreover, using the unmatched uncertainty approximation obtained through radial basis function neural networks, the command governor signal is designed to achieve the desired command following performance of the user‐defined subset of the accessible states. With this command governor‐based model reference adaptive control architecture, the tracking error of the selected states can be made arbitrarily small by judiciously tuning the design parameters. In addition to the analysis of the closed‐loop system stability using methods from the Lyapunov theory, our findings are also illustrated through numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.