Abstract
This article investigates the command filtered adaptive neural tracking control for uncertain nonlinear time-delay systems subject to asymmetric time-varying full state constraints and actuator saturation. To stabilize such a class of systems, the radial basis function neural networks and the backstepping technique are used to structure an adaptive controller. The command filter is utilized to overcome the complexity explosion problem in backstepping. By employing the Lyapunov–Krasovskii functionals, the effect of time-delay is eliminated. The asymmetric time-varying barrier Lyapunov functions are designed to ensure full state constraint satisfaction. Moreover, the hyperbolic tangent function and an instrumental variable are introduced to deal with actuator saturation. All signals in the closed-loop system are proved to be bounded and the tracking error converges to a small neighborhood of the origin. Finally, two examples are provided to illustrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.