Abstract

Cutaneous gas exchange allows some air-breathing diving ectotherms to supplement their pulmonary oxygen uptake, which may allow prolongation of dives and an increased capacity to withstand anthropogenic and natural threatening processes that increase submergence times. However, little is known of the interplay between metabolism, bimodal oxygen uptake and activity levels across thermal environments in diving ectotherms. Here, we show in two species of sea snake (spine-bellied sea snake, Hydrophis curtus; and elegant sea snake, Hydrophis elegans) that increasing temperature elevates surfacing rate, increases total oxygen consumption and decreases dive duration. The majority of dives observed in both species remained within estimated maximal aerobic limits. While cutaneous gas exchange accounted for a substantial proportion of total oxygen consumption (up to 23%), unexpectedly it was independent of water temperature and activity levels, suggesting a diffusion-limited mechanism. Our findings demonstrate that rising water temperature and a limited capability to up-regulate cutaneous oxygen uptake may compromise the proficiency with which sea snakes perform prolonged dives. This may hinder their capacity to withstand ongoing anthropogenic activities like trawl fishing, and increase their susceptibility to surface predation as their natural environments continue to warm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.