Abstract

The vertebrate eye acquires its basic form during the process of optic cup morphogenesis, during which the optic vesicle emerges from the brain neuroepithelium and, through a series of cell and tissue movements, transforms itself into the multilayered optic cup, containing neural retina (comprised of retinal progenitors), retinal pigmented epithelium, and the lens, which is derived from the overlying ectoderm. While great strides have been made to understand the developmental signals controlling specification, patterning, and differentiation of the optic cup, only in recent years have the cellular and molecular bases of optic cup morphogenesis begun to be unraveled. One critical component of the morphogenetic process is the extracellular matrix: the complex, glycoprotein-rich layer that surrounds the optic vesicle and lens. Though the extracellular matrix has long been visualized by classical histological techniques and postulated to play various roles in optic cup development, its functional role was uncertain. This is now beginning to change, as live imaging techniques, quantitative image analyses, molecular genetics and in vitro models yield new insights into the process of optic cup morphogenesis and the specific influences of particular extracellular matrix components and their associated signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.