Abstract

Natural transformation mechanisms have been studied across several bacterial systems, but few examples of inhibition exist. This work investigates the mechanism of action of a plasmid-encoded transmembrane inhibitor of natural transformation. The data reveal that the peptide can cause cell permeabilization. Permeabilization is synergistic with entry of Bacillus subtilis into the "competent" state, such that cells with the ability to be transformed are preferentially killed. These findings reveal a self-preservation mechanism coupled to the physiological state of the cells that ensures that the population can maintain an unaltered plasmid and its predicted prophage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.