Abstract

International thermal comfort standards are applicable for the design and operation of either mechanically cooled or naturally cooled buildings and limited guidance is given for mixed-mode buildings. In this study, a control framework for mixed-mode buildings was defined based on the adaptive comfort model and PMV-PPD method. The proposed framework was tested using a simulation-based analysis of a central module of an office building. The results were compared with a mechanically cooled building. The objective was to characterize how to control mixed-mode buildings optimally, regarding both energy use and thermal comfort. Five locations were considered: Copenhagen - DK, Edinburgh - UK, Palermo - IT, Tokyo - JPN, and Zurich - CH. The mixed-mode control strategy had a primary energy use between 12 and 51 % lower than the mechanically cooled case. In this context, using the upper limit of the adaptive comfort zone as cooling set point rather than the upper limit of the PMV-based comfort zone showed nearly 20 % more energy savings and fewer switchovers between operation modes. Night cooling led to lower operative temperatures and fewer switchovers between operation modes as well as additional energy savings of 10 % only in Palermo. The results show that a mixed-mode building operated based on the adaptive comfort criteria can have a large reduction of energy use without compromising thermal comfort or indoor air quality, compared to a mechanically cooled building.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call