Abstract

Comet-shaped H II regions, like G34.3 + 0.2, are easily explained as bow shocks created by wind-blowing massive stars moving supersonically through molecular clouds. The required velocities of the stars through dense clumps are less than about 10 km/s, comparable to the velocity dispersion of stars in OB associations. An analytic model of bow shocks matches the gross characteristics seen in the radio continuum and the velocity structure inferred from hydrogen recombination and molecular line observations. The champagne flow model cannot account for these structures. VLBI observations of masers associated with the shells of cometary compact H II regions should reveal tailward proper motions predominantly parallel to the shell, rather than perpendicular. It is predicted that over a decade baseline, high signal-to-noise VLA observations of this class of objects will show headward pattern motion in the direction of the symmetry axis, but not expansion. Finally, shock-generated and coronal infrared lines are also predicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call