Abstract

ABSTRACTThree membrane bioreactors (MBRs) with different carbon/nitrogen ratios were operated in parallel to investigate the effects of heterotrophic bacteria and nitrifying bacteria on the co-metabolic degradation of the steroid estrogens (SEs) estrone (E1) and 17α-ethinylestradiol (EE2). The functional community structures of the MBRs were analyzed using fluorescence in situ hybridization, and correlations between the functional community structures and SE removal efficiencies were established. The results showed that α-Proteobacteria, β-Proteobacteria, and γ-proteobacteria were responsible for the removal of E1, whereas ammonia-oxidizing bacteria, Nitrosomonas sp., Nitrosospira sp., Nitrospira sp., and Nitrobacter sp. were responsible for EE2 removal. Nitrifying activated sludge degraded E1 and EE2 alone, with degradation efficiencies of 71.04 and 65.51%, respectively. Moreover, biodegradation of E1 and EE2 was reduced significantly (by 30.30 and 34.03%, respectively) when nitrification was inhibited. Heterotrophic and nitrifying bacteria were responsible for E1 and EE2 degradation, but nitrification was considered to be the key process in the enhancement of SE degradation. Organic co-metabolism by heterotrophic bacteria had a significant effect on E1 removal, and nitrification co-metabolism by nitrifying bacteria had a significant effect on EE2 removal. These results improve our understanding of the co-metabolic degradation of SEs, which is useful for improving SE removal and guaranteeing the health of aqueous environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call