Abstract
Representation learning-based recommendation models play a dominant role among recommendation techniques. However, most of the existing methods assume both historical interactions and embedding dimensions are independent of each other, and thus regrettably ignore the high-order interaction information among historical interactions and embedding dimensions. In this article, we propose a novel representation learning-based model called COMET ( CO nvolutional di M E nsion in T eraction), which simultaneously models the high-order interaction patterns among historical interactions and embedding dimensions. To be specific, COMET stacks the embeddings of historical interactions horizontally at first, which results in two “embedding maps”. In this way, internal interactions and dimensional interactions can be exploited by convolutional neural networks (CNN) with kernels of different sizes simultaneously. A fully connected multi-layer perceptron (MLP) is then applied to obtain two interaction vectors. Lastly, the representations of users and items are enriched by the learnt interaction vectors, which can further be used to produce the final prediction. Extensive experiments and ablation studies on various public implicit feedback datasets clearly demonstrate the effectiveness and rationality of our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.