Abstract
Combustion wave speeds of nanoscale aluminum (Al) powders mixed with iron oxide (Fe 2O 3) were measured as a function of Fe 2O 3 synthesis technique and fuel/oxidizer composition. Three reactant synthesis techniques were examined; two focus on sol–gel processing of nanoscale Fe 2O 3 particles and the third utilizes commercially available nanoscale Fe 2O 3 powder. Nanoscale aluminum particles (52 nm in diameter) were combined with each oxidizer in various proportions. Flame propagation was studied by igniting low-density mixtures and taking data photographically with a high-speed camera. Both open and confined burning were examined. Results indicate that the combustion wave speed is a strong function of the stoichiometry of the mixture and a slightly fuel-rich mixture provides an optimum combustion wave speed regardless of oxidizer synthesis technique. Oxidizers processed using sol–gel chemistry originally contained impurities which retarded the combustion wave speeds. When the same oxidizers are annealed at moderate temperatures, the new heat-treated oxidizer shows a dramatic improvement, with combustion wave speeds on the order of 900 m/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.