Abstract

In this study, an optimum design for the combustion system of a genset diesel engine was conducted by using Design for Six Sigma (DFSS) methodology. As a result of this study, the best combination of design parameters to minimize the fuel consumption of the genset diesel engine was selected while meeting the requirements of NOx emission and peak firing pressure (PFP) limit. Compared to the initial design, the final design proposal has achieved 2.5 % and 1.6 % improvement in brake specific fuel consumption (BSFC) at switchable operating conditions, i.e., both 1500 and 1800 rpm. On the basis of this DFSS work, the design robustness was also enhanced. Hence, it is expected that the final design proposal would reduce the variability in fuel economy that could be caused by harsh environment and system aging. In this study, engine cycle simulation technique was employed to assess the effects of various design parameters on the performances of the genset diesel engine. The current optimum design work has considered four control factors such as turbocharger size, air temperature at charge air cooler (CAC) outlet, compression ratio, and fuel injection duration. Here, an L9 orthogonal array was used to efficiently choose the best design proposal among 81 design combinations (i.e., four independent control factors which individually have three different levels).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.