Abstract
Reactive systems, which are widely used in combustion synthesis, represent a promising solution for challenging joining tasks. They are able to undergo a self-sustaining, highly exothermic reaction when exposed to an external energy source. Reactive foils are the only systems that are currently commercially available. However, their industrial use is limited due to the brittle nature of the material and the restriction to planar geometries. Reactive particles represent a more flexible format, but are currently not commercially available. Therefore, a two-step electroless plating process has been developed to synthesize nickel-aluminum core-shell structures. These structures function as microreactors, which provide the energy for the thermal joining process. Ignition tests with electromagnetic waves were performed in order to investigate the overall reactivity. Energy input and particle size significantly influence the activation and the reaction behavior of the core-shell structures. Furthermore, a general approach to use reactive particles as a heat source in joining applications is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.