Abstract

Discussed is the influence of the fuel and water employed in combustion synthesis of single-phase (perovskite) PZN-10PT nanopowder with an x = 0.10 composition. Pb(NO3)2, Zn(NO3)2 · 6H2O, (NH4NbO(C2O4)2), and C8H20O4Ti were used as cation precursors while urea, glycine, glycine/urea (50/50 ratio), and tetraformal triazine (TFTA), as fuels. Two sets of precursors (denoted as set-1 and set-2) were used with each of these fuels, and four different fuels: without and with the addition of 250 mL of water. The results indicated that the highest percentage of perovskite phase in the PZN-10PT nanopowders was obtained using an urea/glycine mixture as a fuel. When the urea/glycine mixture was added to the solution containing cations precursors, the two fuels form a gel in aqueous solution, this gel contributes not only to obtain homogeneously mixed in the starting material but also aids explosive combustion leading to a high-temperature reaction within a shorter period of time, which is a condition that favors the formation of metastable PZN-10PT nanopowders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call