Abstract

In this work, the characteristic parameters, evolved gases, reaction mechanisms, and ash conversions of the durian shell (DS) combustion were quantified coupling thermogravimetry, mass spectroscopy, Fourier transform infrared spectroscopy, and X-ray fluorescence spectra analyses. The main stage of the DS combustion occurred between 130.2 and 481.9 °C. Its activation energy value estimated by the three model-free methods ranged from 192.82 to 213.24 kJ/mol. The average enthalpy, entropy and Gibbs free energy changes were in the ranges of 177.74–178.47 kJ/mol, 32.00–34.25 J/(mol·K), and 200.79–207.74 kJ/mol, respectively. The third-order (F3) model best described its most likely reaction mechanism. The main evolved gas was CO2, with no SO2 emission. The ash from the DS combustion belonged to K-type ash. 618 °C and 8 K/min were determined as the optimal operation conditions to jointly optimize the multiple targets of the combustion responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call