Abstract
Summary Oils that are potential candidates for in situ combustion recovery processes are often screened by means of their oxidation characteristics: in particular, the kinetics of the ignition process and the transition from low-temperature to high-temperature oxidation through what is known as the "negative temperature gradient region." These characteristics are readily studied in ramped-temperature oxidation tests, which involve the controlled heating of recombined, oil-saturated cores in a one-dimensional plug flow reactor under a flowing stream of air (or oxygen-containing gas). The purpose of these tests is to study the global oxidation behavior and reaction kinetics under controlled conditions, with the end purpose of providing realistic data for incorporation into a numerical simulator which can be used to predict field performance. A ramped-temperature oxidation apparatus was used to conduct a detailed, two-year parametric study of the oxidation characteristics of Athabasca Oil Sands bitumen. The text matrix involved various levels of pressure, gas injection rate, oxygen content of the injected gas, and maximum ramp temperature. This paper details the principal findings for the 45-test study; especially the need to maintain high reaction temperatures (> 380° C) in order to mobilize and produce heavy oils under conditions of dry in situ combustion. Design considerations and operational guidelines for successful field projects arising from the results of this study are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.