Abstract

Steady-state strand burner and laboratory-scale static fire motor experiments were used to determine the relative performance and viability of an environmentally friendly solid propellant composed of only nanoaluminum and frozen water. The nominal size of the nanoaluminum particles was 80 nm. The particles were homogeneously mixed with water to form pastes or colloids and then frozen. The measured parameters include burning rates, slag accumulation, thrust, and pressure. A system scaling study was performed to examine the effect of the size of the small-scale motors. The equivalence ratio was fixed at 0.71 for the strand burner and the laboratory-scale motor experiments. The effect of pressure on the linear burning rate was also examined. For an equivalence ratio of 0.71, the mixture exhibited a linear burning rate of at a pressure of 10.7 MPa and a pressure exponent of 0.79. Three motors of internal diameters in the range of 1.91–7.62 cm were studied. Grain configuration, nozzle throat diameter, and igniter strength were varied. The propellants were successfully ignited and combusted in each laboratory-scale motor, generating thrust levels above 992 N in the 7.62-cm-diam motor with a center-perforated grain configuration (7.62 cm length) and an expansion ratio of 10. For the 7.62 cm motor, combustion efficiency was 69%, whereas the specific impulse efficiency was 64%. Increased combustion efficiency and improved ease of ignition were observed at higher chamber pressures (greater than ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.