Abstract

Micron-sized composite particles consisting of an Al-Mg alloy and Zr were produced via mechanical milling. Three different particle chemistries were prepared with varying ratios of the Al-Mg alloy to Zr. In addition, the prepared powders were size selected using mechanical sieves. Explosively launched combustion properties of these powders were independently measured as a function of the particle stoichiometry and particle size. Ignition temperatures were measured utilizing a heated filament experiment while combustion efficiency was characterized by measuring the dynamic pressure produced in a closed bomb in which the powder was explosively dispersed under fixed enthalpy conditions. Commercial Al powder, Valimet H-2, was also tested alongside these materials as a benchmark. High-speed video and thermocouple measurements were also obtained for the closed bomb experiments. We observed an increase in combustion efficiency from 30% to 80–90% in the composite materials compared to the pure Al. Furthermore, reaction products were collected and analyzed by powder x-ray diffraction to gain further insight into combustion efficiency and reaction pathways. We observed significant improvement of combustion under these experimental conditions, including higher quasi-static pressures and higher rates of pressure rise, with composite fuels compared to pure Al, even without a secondary oxidizer additive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.