Abstract

Energy services could be greatly improved by using of residues from local food industries in small-scale combustion units. Wood pellets are a reliant and proven fuel to be used in small-scale combustion units. However, these units should preferably be able to use different types of biomass depending what it is locally available. Therefore, studies have been focused on exploring the suitability of using agricultural residues for small-scale heat and power generation using direct combustion. This study targets to compare the combustion of different agricultural residues in a single unit designed for wood pellets. The different biomass fuels used are Ø6mm and Ø8mm wood pellets, Ø6mm bagasse pellets, Ø6mm sunflower husk (SFH) pellets and Brazil nut (BN) shells. The results reveal a decrease in the fuel power input, higher oxygen levels in the flue gases and shorter cycles for ash removal when using the agricultural residues. The excess air ratio was calculated based on a mass balance and compared with a standard equation showing a good agreement. CO and NO emission levels as well as the relative conversion of fuel-C to CO were higher for the BN shells and SFH pellets in comparison to the other biomass types. SO2 emission was estimated based on the analysis of unburned sulfur in ash and mass balances; the higher estimated levels corresponded to the BN shells and SFH pellets. All the biomass sorts presented over 95% relative conversion of fuel-C to CO2. Wood pellets and BN shells presented the highest amount of unburned carbon in ash relative to the fuel-C. The relative conversion of fuel-N to NO and fuel-S to SO2 were higher for wood pellets. Bagasse pellets showed similar emission levels and relative conversion efficiency to wood pellets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.