Abstract

AbstractThe combustion wave structure and thermal decomposition process of azide polymer were studied to determine the parameters which control the burning rate. The azide polymer studied was glycidyl azide polymer (GAP) which contains energetic – N3 groups. GAP was cured with hexamethylene diisocyanate (HMDI) and crosslinked with trimethylolpropane (TMP) to formulate GAP propellant. From the experiments, it was found that the burning rate of GAP propellant is significantly high even though the adiabatic flame temperature of GAP propellant is lower than that of conventional solid propellants. The energy released at the burning surface of GAP propellant is caused by the scission of NN2 bond which produces gaseous N2. The heat flux transferred back from the gas phase to the burning surface is very small compared with the heat generated at the burning surface. The activation energy of the decomposition of the burning surface of GAP propellant, Es, is determined to be 87 kJ/mol. The burning rate is represented by r = 9.16 × 103 exp(–Es/RTs) where r (m/s) is burning rate, Ts (K) is the burning surface temperature, and R is the universal gas constant. The observed high temperature sensitivity of burning rate is correlated to the relationship of (∂Ts/∂T0)p = 0.481 at 5 MPa, where T0 is the initial propellant temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.