Abstract

Combustion dynamics are investigated for plasma-enhanced methane-air flames in premixed and nonpremixed configurations using a transient arc dc plasmatron. Planar laser-induced fluorescence images of hydroxyl (OH) and carbon monoxide (CO) radicals are obtained over a range of equivalence ratios (φ = 0.7 - 1.3), flow rates (6-18 LPM), and plasma powers (100-900 mA) to monitor radical propagation and in situ fuel reforming. The flow rates presented here are outside the range of normal flame stability. In the nonpremixed mode, the fuel is injected separately as a coflow around the plasma discharge, resulting in a unique two-cone flame front geometry, and the flame stability is mainly dependent on the flow dynamics. For premixed flames, partial oxidation occurs inside the chamber, resulting in higher energy conversion efficiencies, and stability is shown to be sensitive to the combustion chemistry. Both configurations are significantly influenced by in situ fuel reforming at higher plasma powers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call