Abstract

The presence of sulphur in fossil fuels contributes uncertainty to predicting their combustion behaviour. Detailed understanding of the combustion chemistry of sulphur species, comprising precise kinetic models, will enable optimisation of important industrial operations, such as Claus process in desulphurisation of hydrocarbons. The present contribution reports new experimental measurements on oxidation of carbon disulphide under dry and wet conditions from experiments performed in a jet-stirred reactor (JSR) and develops a comprehensive oxidation mechanism of CS2 with updated COS/O2 subset of reactions, based on addition of intersystem-crossing reaction corridors. We performed the experiments within the temperature range of 650–1100 K, under atmospheric pressure, and equivalence ratios of 0.7, 1.0 and 1.3, for the residence time of 0.3 s. Online infrared spectroscopy identified CO and SO2 as primary oxidation products, distinguishing COS as the major intermediate species. Within the temperature window of 650–1100 K, the presence of moisture exhibits no obvious effect on the oxidation of CS2, due to high kinetic stability of H2O. The modelling predicts the conversion of CO to CO2 at temperatures in excess of 1200 K. The measured concentration profiles (CS2, COS, CO and SO2) facilitated the validation, as well as the improvement of the previously existing mechanism of CS2 oxidation. Good agreement appears between measured and modelled onset temperatures and consumption profiles for detected species, confirming the robustness of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.