Abstract

Due to the intensive and extensive consumption of fossil fuels in all life sectors such as transportation, power generation, industrial processes, and residential consumption lead to find other new alternative fuels should be the target to cover this fuel demand. Fossil fuel resources are considered non-renewable sources and they will be depleted in the near future. In addition to its environmental impact which causes global warming, harmful exhaust emissions, and its price instability. Waste cooking oil (WCO) was considered as one of these alternative fuels and additives which will provide the industry with low price fuel and may solve the problem of getting rid of waste cooking oil. The present work demonstrated a comparative study for combustion characteristics between light diesel oil (LDO) and waste cooking oil in a swirled oil burner. Waste cooking oil was used directly as a fuel inside a cylindrical combustor using a swirled liquid oil burner at different operating conditions. Waste cooking oil was preheated to 90 °C before entering oil burner to decrease its viscosity and near to light diesel oil. Physical and chemical properties of waste cooking oil were measured and characterized according to ASTM standards. Combustion characteristics of this swirled oil burner using waste cooking oil and light diesel oil were experimentally investigated. Axial and radial inflame temperatures; exhaust gas emissions concentrations and combustor efficiency were analyzed. The experimental results showed that the increase of primary air pressure led to increase in exhaust gas temperature for LDO and WCO. CO2 emissions values for LDO increased compared to WCO. Hydrocarbons a emissions for WCO were higher than LDO. Percentage of heat transferred to the combustor wall increased for WCO compared to LDO. Increase of radial inflame temperature of WCO compared to LDO was due to the increase in heat release at high equivalence ratio. Waste cooking oil tended to produce luminous flames compared to diesel oil due to higher carbon content in its chemical composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call