Abstract

AbstractThe novel grain‐binding high burning rate propellant (NGHP) is prepared via a solventless extrusion process of binder and spherical propellant grains. Compared with the traditional grain‐binding porous propellants, NGHP is compact and has no interior micropores. During the combustion of NGHP, there appear honeycomb‐like burning layers, which increase the burning surface and the burning rate of the propellant. The combustion of NGHP is a limited convective combustion process and apt to achieve stable state. The larger the difference between the burning rate of the binder and that of the spherical granular propellants exists, the higher burning rate NGHP has. The smaller the mass ratio of the binder to the spherical granular propellants is, the higher the burning rate of NGHP is. It shows that the addition of 3 wt.‐% composite catalyst (the mixture of lead/copper complex and copper/chrome oxides at a mass ratio of 1 : 1) into NGHP can enhance the burning rate from 48.78 mm⋅s−1 in the absence of catalyst to 56.66 mm⋅s−1 at P=9.81 MPa and decrease the pressure exponent from 0.686 to 0.576 in the pressure range from 9.81 to 19.62 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.