Abstract

Reactivity of nanosized objects is a hot topic in modern solid-state chemistry and materials science. The present work is focused on the interaction between multi-walled carbon nanotubes (MWCNTs) and metallic titanium during high-energy ball milling and thermal explosion, a rapid temperature rise in a mixture caused by an exothermic reaction ignited by external heating and occurring throughout the sample volume. A fundamental property of the nanocomposite mixture—the ability of its components to react in the combustion mode—is explained; an analysis of the dependence of the combustion characteristics of the nanocomposites on the milling duration of powder mixtures is provided. The phase and structural transformations of the Ti-MWCNT mixtures have been analyzed using X-ray diffraction and transmission electron microscopy. It was found that the ball-milled powders contain nanostructured titanium, nanotube fragments, amorphous carbon and nanosized carbon-deficient titanium carbide TiCx. Within the nanocomposite powder particles, TiCx nanoparticles are covered with layers of amorphous carbon. Thermal explosion was observed in Ti-4mass%MWCNT mixtures milled for 1.5–7 min. Shorter milling times were apparently not sufficient for establishing a proper interfacial contact, while longer milling times led to the extensive formation of titanium carbide TiCx, which acted as a barrier lowering the heat release by the mixture upon ignition. Both the ignition temperature of Ti-4mass%MWCNT and the maximum temperature developed during thermal explosion decrease with the milling time. A comparison of the behavior of MWCNT with that of carbon black under conditions of thermal explosion in the mixtures with titanium is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.