Abstract
The combustion of sassafras wood (Sassafras tzumu Hemsl) was investigated based on thermogravimetric analysis coupled with fire propagation apparatus under different heating conditions. The activation energies for various conversions estimated by two different non-isothermal methods were in the range of 83.13–235.51 kJ/mol. Two regions were established: Region I is oxidative pyrolysis corresponding to α < 0.65, Region II refers to char combustion with α ≥ 0.65. Thermodynamic parameters ΔH, ΔG and ΔS were determined more precisely by activated complex theory. The combustion indices (Ci, Cb, Cv and S) were found to be notably increasing at higher heating rates, indicating a more concentrated combustion zone and superior combustibility. During the whole combustion process in bench-scale FPA experiments, when the sample thickness increases from 0.5 to 1.5 cm, characteristic parameters including TTI, Peak EHC, THR varies from 93 to 144s, 10.43 to 9.93 MJ/kg, 25.14–60.75 MJ/m2, respectively. The evolution of main gas components (CO, CO2) are generated due to the breakdown of hemicellulose, and possible formation pathways of CO and CO2 were tentatively presented as a two-step reaction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.