Abstract

In recent years, the approaches paid much attention to are adding nanoparticles in biodiesel-based fuels to overcome the disadvantages of biodiesel like high molecular mass, high viscosity, and pouring point, and low calorific value significantly affecting the spray, atomization, and combustion characteristics. Among the aforementioned nanoparticles, Cerium oxide (CeO2) nanoparticles show their advantages such as flexible capacity in valence transformation, large oxygen storage, and good thermal properties, CeO2 nanoparticles are thus believed to have a great potential to become an additive for the diesel engine. Indeed, in this review paper, the preparing methods and physicochemical properties of biodiesel-based fuels containing CeO2 nanoparticles were fully introduced. Furthermore, the effects of CeO2 on the atomization and micro-explosion of as-used fuels were also discussed in detail. More importantly, the combustion behavior, performance, and emission characteristics of diesel engines fuelled with biodiesel containing CeO2 nanoparticles were thoroughly analyzed. In general, the addition of CeO2 nanoparticles into biodiesel has demonstrated positive effects on reducing toxic emissions (soot, smoke opacity, NOx, CO, HC), enhancing thermal efficiency and brake power, and improving fuel consumption. However, the impacts of CeO2 nanoparticles on PM emission, human health, and the environment need to be further investigated in future researches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call