Abstract

ABSTRACT There is considerable interest in the utilization of fuels derived from boron materials, with their high calorific value, in various applications ranging from propellants to pyrotechnics. Conversely, their impact on the combustion behavior of conventional hydrocarbon fuels remains largely unclear. In this study, ignition, combustion, micro-explosion and simultaneous atomization behaviors of gasoline-based alternative fuels containing metallic (28–35 µm MgB2), nonmetallic (1 µm amorphous boron, 10 µm AlB12 with 86–88% and 95–97% purity) and organo-metallic boron derivatives (triethyl borate (TEB) containing C2H5 groups and trimethyl borate (TMB) containing CH3 groups) were investigated. The experiments were carried out at droplet scale and recorded using a high-speed camera and a thermal camera. The findings revealed a systematic reduction in ignition delay for each gasoline fuel enriched with boron derivatives. 2.5%AlB12/G and pure TMB droplets were the fastest extincting fuel droplets (0.9678 s and 1.245 s, respectively). The highest maximum flame temperature was recorded as 626 K and 610 K for pure TMB and 80%TEB/G, respectively. Droplet diameter regression analyses showed that the diameters of fuel droplets containing predominantly metallic and nonmetallic boron derivatives decreased in accordance with the d 2 -law. This study demonstrated that cost-effective and easily producible amorphous boron and organometallic boron derivatives are promising energy carriers for hydrocarbon fuels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.